Convergence of Multipoint Padé-type Approximants

نویسندگان

  • Bernardo de la Calle Ysern
  • Guillermo López Lagomasino
چکیده

Let µ be a finite positive Borel measure whose support is a compact subset K of the real line and let I be the convex hull of K. Let r denote a rational function with real coefficients whose poles lie in C \ I and r(∞) = 0. We consider multipoint rational interpolants of the function f (z) = dµ(x) z − x + r(z), where some poles are fixed and others are left free. We show that if the interpolation points and the fixed poles are chosen conveniently then the sequence of multipoint rational approximants converges geometrically to f in the chordal metric on compact subsets of C \ I.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal rational functions and quadrature on the real half line

In this paper we generalize the notion of orthogonal Laurent polynomials to orthogonal rational functions. Orthogonality is considered with respect to a measure on the positive real line. From this, Gauss-type quadrature formulas are derived and multipoint Padé approximants for the Stieltjes transform of the measure. Convergence of both the quadrature formula and the multipoint Padé approximant...

متن کامل

General Inequalities for Multipoint Padé Approximants to a Stieltjes Function Expanded at Real Points

In this paper we establish the general inequalities for diagonal and subdiagonal multipoint Padé approximants to a Stieltjes function f in terms of power expansion of f on the real line. The inequalities derived produce the best upper and lower bounds on f with respect to the given coefficients of Stieltjes series. As an example of applications sequences of upper and lower Padé bounds convergin...

متن کامل

An operator approach to multipoint Padé approximations

First, an abstract scheme of constructing biorthogonal rational systems related to some interpolation problems is proposed. We also present a modification of the famous step-by-step process of solving the NevanlinnaPick problems for Nevanlinna functions. The process in question gives rise to three-term recurrence relations with coefficients depending on the spectral parameter. These relations c...

متن کامل

Problema De Momentos De Stieltjes Y Convergencia De Aproximantes De Padé Para Funciones Meromorfas De Stieltjes

We obtain a result on convergence of Padé approximants for meromorphic functions of Stieltjes type. Connection of Padé approximants with Stieltjes moment problem plays a key role in the proof.

متن کامل

Convergence of Padé approximants of Stieltjes-type meromorphic functions and the relative asymptotics of orthogonal polynomials on the real line

We obtain results on the convergence of Padé approximants of Stieltjes-type meromorphic functions and the relative asymptotics of orthogonal polynomials on unbounded intervals. These theorems extend some results given by Guillermo López in this direction substituting the Carleman condition in his theorems by the determination of the corresponding moment problem. c © 2009 Elsevier Inc. All right...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2001